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A confluence of two streams of model theory has led in recent years to some
interesting connections with other subjects, including finite group theory
and algebraic geometry. I will attempt to survey these two streams and
explain the nature of the contact. The main ingredients are:

1) Algebraic model theory: model completeness theorems .

2) A general theory of finite (and infinite) dimensional geometries, of a
certain type. (Stability and its generalizations.)

3) Characterization theorems for classical geometries within the abstract
class considered in (2).

The prototype for model completeness theorems is Tarski’s theorem relating
to real algebraic geometry. It asserts that the class of “semi-algebraic sets”
- subsets of R ™ defined by polynomial equalities and inequalities - is closed
under projections from R ™ to R ™. it follows that all basic elementary op-
erations (including, for instance, taking the closure of a set) can be carried
out without leaving this class. As a corollary, an algorithm exists to de-
termine in advance the outcome of any elementary geometric construction;
and one is guaranteed that such a construction will never lead to topological
or set theoretic pathologies.

Similar results have been proved (i. a.) for p-adic algebraic geometry,
for geometries incorporating analytic functions (on bounded domains, and
some others), for the ring of algebraic integers. The present applications
use the model completeness results for fields with differential and difference
operators. (These results are due to Robinson, Ax, Kochen, Macintyre, Van
den Dries, Denef, Wilkie, and others.)

The theory of finite dimensional geometries referred to in (2) begins with the
conclusion of the model completeness results, without assuming however any
particular algebraic structure. One is given abstractly a class of “definable”
sets (corresponding to the semi-algebraic sets in Tarski’s theorem) and a
dimension theory on the definable sets.

The theory generalizes basic features of algebraic geometry, including alge-
braic groups and homogeneous spaces; in this it generalizes the differential
Galois theory of Lie and Kolchin. It allows also some phenomena that do
not occur classically, in particular for the mixing of geometries of essentially
different types. Shelah’s theory shows how to analyze a given structure in
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terms of certain simple geometries within it, and describes their possible
interactions.

(3) Ordinary algebraic geometry over algebraically closed fields is entirely
characterized, within this class of abstract geometries, by a nondegeneracy
and nonlinearity condition and a condition on the dimensions of intersec-
tions (generally, intersecting a k-dimensional set with one of codimension 1
should give a set of pure dimension k — 1.) This result of Zil’ber and the
author appeared initially as a foundational result; curiously it turned out
to be a main component in the applications.

The connection with geometry is made by considering algebraic varieties
with additional structure; here we will take it to be a vector field. Similar
theorems hold for several commuting fields, or for correspondences (the
latter required an extension of stability theory.)

We will illustrate the theory using a theorem placing a limit on the number
of integral subvarieties of the flow. It is generally felt that algebraic inte-
gral varieties of sufficiently general flows should be rare, but their analysis
is difficult and general results are few. (Except in codimension one, where
the qualitative situation is understood thanks to results of Jouanolou). The
approach here is to consider these varieties as the closed sets of an abstract
geometry, and to use model theoretic analysis of such geometries, The model
theory then identifies the exceptional cases, where many integral subvari-
eties do exist, and describes dividing lines that must be taken into account
in any general description of algebraic ODE’s and their transformations.
Related results have been used to draw consequences in diophantine geom-
etry.

Let V be a smooth complex algebraic variety, with an algebraic vector field
&. We will be interested in algebraic families {U} of algebraic subvarieties
V', that are left invariant by the flow corresponding to £&. We do not demand
that U itself be left invariant; only that the deformations of U remain in
the same family. Call a subvariety U belonging to such a family, £coherent.
Thus every point is £-coherent, as well as every integral subvariety of £. One
defines a “geometry” on V, roughly speaking by taking the “closed sets” of
X (or of X™) to be the coherent subvarieties of X or X™.

By a “curve”, let us mean an infinite &-coherent subvariety of V', with no
proper subvarieties of the same kind. It may well have higher dimension
than 1, as an algebraic variety. Through each point there passes at least
one “curve”; there may be infinitely or uncountably many. If there are more
than n = dim(V') “curves” through every (sufficiently general) point of V,
we will say that the Kolchin geometry is nondegenerate.

If £ = 0, every subvariety is integral, and we simply have the usual algebraic
geometry on V. More generally if ¢ admits an algebraic first integral, at
least a part of the geometry is classical. The conclusion of (3) will help
identify such cases.

Theorem Assume the Kolchin geometry on V is nondegenerate. After
removing from V a finite number of lower dimensional integral subvarieties,
one of the following occurs:
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a. & has an algebraic first integral; i. e. there exists amap f:V - W, W
an algebraic variety of dimension > 1, such that the vector field £ is parallel
to the fibers of f.

b. There exists an equivariant map f : V — V', V' an algebraic variety
of smaller dimension carrying a vector field &', such that the fibers of f are
principal homogeneous spaces for algebraic groups; and the action respects
the vector field.

c. There exists a map f as in (3), such that the fibers are rational images
of Abelian varieties under a finite map; the vector field corresponds to the
Manin equation.

The equations occurring in (3) have an interesting structure that is precisely
described by the model theory; it is this description that has been used in
applications to diophantine geometry.

The proof has the following stages. Quantifier elimination for differential
fields (and some additional model theory for these fields) shows that the ab-
stract geometry corresponding to the coherent subvarieties enjoys the basic
properties necessary to apply (2). The consequent dimension theory will be
bounded by, but will not in general coincide with, the original dimension
on the variety. Shelah’s theory will be used to find a canonical filtration
by maps f : V — W, such that the fibers at each stage are coordinatized
by one-dimensional geometries. The situation then splits according to the
the structure theorems for these simple geometries, and one obtains an ab-
stract version of the case division. At this point one recalls the differential
geometric provenance of the geometry, and deduces (a-c).

Shelah’s theory is actually more general than what is indicated here, and
does not assume finite dimensionality. This greater generality should be of
use in future applications, in particular to PDEs.

On the other hand, restrictive assumptions are currently made on the nature
of the dimension theory. These are valid in complex algebraic geometry, but
rule out e. g. p-adic geometry. Indeed the theory did not initially apply to
difference equations; stability needed to be generalized to a wider context,
simple theories (Shelah, Kim, Pillay, Hart, Wagner, Buechler, Shami, and
others). A separate theory (O-minimality) exists for geometries resembling
the reals, and in particular the analog of (3) has been proved by Peterzil
and Starchenko. But a satisfactory common framework remains a challenge.
Future applications will depend on expansions of the current frontier of
model completeness results, perhaps covering for example fields with global
aspects such as theories of heights, and on extensions of the pure model
theory of geometric structures.

(References in the article text.)
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