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Constant term indentities

The archetype of the constant term identities to be considered is the fol-
lowing statement, first conjectured in 1961 by F. J. Dyson but proved soon
afterwards. Let z1,...,z, be independent indeterminates and k a positive
integer. Then the constant term in the Laurent polynomial

Ay(z) = ﬁ (1;7—J>k (1)

is equal to (nk)!/(k!)™.
Later, in 1975, G. E. Andrews proposed an extrapolation of (1) involving
an extra parameter q. We shall use the notion
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Clearly, as ¢ — 1 we have (z;q)r — (12)*, and (¢;q)x/(1 — q)¥ — k!
Let
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Ap(x;q) = H <5z’j;;Q> (2)
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where €;; = 1 or q according as ¢ < j or ¢ > j. Then Andrews conjectured
that the constant term of (2) (i. e. , involving ¢ but none of the z;) should
be

(& Dnk/ (G5 (3)

Clearly (2) reduces to (1) as ¢ — 1, so that Andrews’ conjecture includes
Dyson’s.
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From our point of view, the polynomial Ag(z;q) is to be regarded as at-
tached to the simple Lie algebra sl,(C) consisting of the n x n complex
matrices with trace zero. In fact each finite-dimensional complex simple Lie
algebra g gives rise to an analogous Laurent polynomial and constant term
identity.

Orthogonal polynomials

Let A,, denote the ring of symmetric polynomials in z1,...,x, with coeffi-
cients in the field F' = Q(gq). For each partition A = (Aq,..., ;) of length
< n, let my denote the monomial symmetric function indexed by A, that
is to say the sum of all distinct monomials obtainable from asi‘l, ...,z by
permuting the xz;, Clearly the my form an F-basis of A,,.

We shall use the polynomial A; = Ag(z;¢q) to define a scalar product on
A,,, as follows: if f,g € A,, then

(f,9)r = constant term in fgAy

where g is obtained from g by replacing each z; by x; 1. One shows then
that there is a unique basis (Py) of A,,, indexed by partitions of length < n,
such that

(a) Py =mx+ Y axumy
<A

with coefficients ay, € F, where p < A means that p precedes A in the
lexicographic ordering; and

(b) (Px,P,) =0 whenever A # p.

Moreover, there is a closed formula for the squared norm of Py, namely

n )\ }\Jty i, Q)k
<P)\7P)\ H >\ Xjti— 1, l)k (4)

1<J
le

where ¢t = ¢*. In particular, when A = 0 we have Py = 1, and (4) then
reduces to the constant term (3) of A.

Again, all this can be done in the context of an arbitrary finite-dimensional
simple Lie algebra g in place of sl,, and thus for each such g we have a
family of orthogonal polynomials Py, symmetric under the Weyl group of g
and indexed by the dominant weights.

Affine Hecke algebras

In the case of sl,, the norm formula (4) can be proved directly. For arbitrary
g there is an analogous formula which was first proved in full generality by
Cherednik. Cherednik’s proof uses the affine Hecke algebra H attached to g
and its action on the space spanned by the polynomials Pjy; this leads to a
family of commuting operators on this space whose simultaneous eigenfunc-
tions are precisely the Py. The norm formula (4) — or rather its counterpart
for arbitrary g — can then be established by induction on k.
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