
1ICM 1998, Berlin, Aug. 18{27Abstracts of Plenary and Invited LecturesSection:0. Plenary Lectures1991 MS Classi�cation: 11Y05, 68Q05, 81P99Shor, Peter W., AT&T Labs, Florham Park, USAQuantum ComputingChurch's thesis says that any computable function is computable on a Tur-ing machine. This thesis arose in the 1930's, and was motivated by the real-ization that three quite distinct de�nitions of computable functions were allequivalent. It is well-known that this is not a theorem, as Church's thesisdoes not specify a rigorous mathematical de�nition of \computable"; speci-fying such a de�nition would lead to a provable theorem (and in many caseshas), but it detracts from the generality of the thesis. What is somewhat lesscommonly realized is that this thesis can be viewed as a statement about thelaws of physics, by interpreting computable as meaning computable in thephysical world. For this interpretation, if the laws of physics are computableby a Turing machine, then Church's thesis is true.The development of digital computers rendered the distinction between com-putable and uncomputable functions too coarse in practice, as it does nottake into account the time required for computation. What was neededwas some characterization of e�ciently computable functions. Theoreticalcomputer scientists reached a good compromise between theory and prac-tice with the de�nition of polynomial-time computable functions as thosefunctions whose value can be computed in a number of steps polynomial inthe input size. This de�nition is abstract enough to have good theoreticalproperties for use in proofs, while for functions arising in practice it includesmost of the e�ciently computable ones and excludes most of those not ef-�ciently computable. This de�nition naturally gave rise to a \folk thesis," the polynomial Church's thesis, which says that any function physicallycomputable in time t can be computed on a Turing machine in time p(t),where p is some polynomial.Is this thesis valid? One good place to start looking for counterexampleswould be physical systems which require large amounts of computer timeto simulate. Two obvious such candidates are turbulence and quantummechanics. In 1982, Feynman considered the case of quantum mechanics,and concluded that quantum mechanical systems seem to inherently requirean exponential overhead to simulate on digital computers. In a \side remark," he proposed using quantum computers, operating on quantum mechanicalprinciples, to circumvent this problem. Deutsch (1985) gave a de�nition ofa quantum Turing machine and suggested that quantum computers mightsolve classical problems more quickly than digital computers. It currentlyICM 1998 Berlin � Plenary and Invited Lectures



2 0. Plenary Lecturesappears that this is indeed the case. One of the pieces of evidence for this isthat quantum computers can factor integers in polynomial time, somethingwhich it is not known how to do on classical computers despite many yearsof study.A nice abstract model of a quantum computer is the quantum circuit. Thismachine computes using n 2-state quantum systems; each of these 2-statesystems is called a qubit. The quantum state space of the joint system isa complex vector space of dimension 2n, formed from the tensor product ofn two-dimensional complex vector spaces, one associated with each qubit.The state of this system is described by unit vector in this 2n-dimensionalspace. Because of the Heisenberg uncertainty principle, the output statecannot be obtained exactly. Rather, if the end result of the computationis P2n�1i=0 �ivi, the observed output will be some integer 0 � i < 2n, and iwill be observed with probability j�ij2 (here the vi are basis vectors of thequantum state space). Possible physical transitions are unitary transfor-mations of this vector space. We cannot assume that we can perform anyunitary transformation in one step, as this is not only physically unrealis-tic, but also would result in any function being computable in unit time.Rather, we must assume that in one step we can make a unitary transfor-mation on one or two of the qubits, which via the tensor product naturallyinduces a transformation on the whole vector space. In fact, it su�ces tobe able to perform a small number of di�erent one- and two-qubit unitarytransformations to perform any quantum computation (Barenco et al 1995).For factoring an L-bit number N , the best classical algorithm known is thenumber �eld sieve, which asymptotically takes time O(exp(cL1=3 log2=3L)).On a quantum computer, the quantum factoring algorithm takes asymptot-ically O(L2 logL log logL) steps. The key idea is to use a Fourier transformto �nd the period of the sequence ai = xi(mod N), from which period afactorization of N can be obtained. The period of this sequence is expo-nential in L, so this approach is not practical on a digital computer. Ona quantum computer, however, we can �nd the period in polynomial timeby exploiting the 26L-dimensional state space of 6L qubits, and taking theFourier transform over this space.Quantum computers will be very hard to realize physically. We need quan-tum systems which are relatively stable, and which interact strongly witheach other but weakly with everything else. Without error correction, itwould probably be an impossible engineering task to build quantum com-puters large enough to factor 100-digit numbers|factoring such a numberrequires billions of steps on a quantum computer, so each step would needto be accurate to better than one part in a billion. Fortunately, it is pos-sible to design fault-tolerant circuits for quantum computers, which allowcomputations of arbitrary length to be performed with gates accurate onlyto some constant c. Current estimates put this constant larger than 10�4(Preskill 1997).References:A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P.ICM 1998 Berlin � Plenary and Invited Lectures
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